首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1783篇
  免费   221篇
  国内免费   46篇
化学   366篇
晶体学   2篇
力学   87篇
综合类   10篇
数学   14篇
物理学   1571篇
  2024年   4篇
  2023年   91篇
  2022年   129篇
  2021年   171篇
  2020年   150篇
  2019年   18篇
  2018年   61篇
  2017年   103篇
  2016年   122篇
  2015年   46篇
  2014年   185篇
  2013年   58篇
  2012年   128篇
  2011年   84篇
  2010年   76篇
  2009年   74篇
  2008年   73篇
  2007年   78篇
  2006年   43篇
  2005年   60篇
  2004年   44篇
  2003年   38篇
  2002年   23篇
  2001年   25篇
  2000年   26篇
  1999年   18篇
  1998年   17篇
  1997年   28篇
  1996年   22篇
  1995年   11篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1969年   1篇
排序方式: 共有2050条查询结果,搜索用时 78 毫秒
51.
The aim of this study was ultrasound assisted removal of Ceftriaxone sodium (CS) based on CCD model. Using sonochemical synthesized Bi2WO6 implanted on graphitic carbon nitride/Multiwall carbon nanotube (g-C3N4/MWCNT/Bi2WO6). For this purpose g-C3N4/MWCNT/Bi2WO6 was synthesized and characterized using diverse approaches including XRD, FE-SEM, XPS, EDS, HRTEM, FT-IR. Then, the contribution of conventional variables including pH, CS concentration, adsorbent dosage and ultrasound contact time were studied by central composite design (CCD) under response surface methodology (RSM). ANOVA was employed to the variable factors, and the most desirable operational conditions mass provided. Drug adsorption yield of 98.85% obtained under these defined conditions. Through conducting five experiments, the proper prediction of the optimum point were examined. The respective results showed that RSD% was lower than 5% while the t-test confirmed the high quality of fitting. Langmuir isotherm equation fits the experimental data best and the removal followed pseudo-second order kinetics. The estimation of the experimentally obtained maximum adsorption capacities was 19.57 mg.g of g-C3N4/MWCNT/Bi2WO6 for CS. Boundary layer diffusion explained the mechanism of removal via intraparticle diffusion.  相似文献   
52.
Essential oil nanoemulsions have been proven to have stronger antimicrobial effects compared to the essential oil alone or coarse emulsion. Sonoporation could be the promising candidate to trigger a synergistic effect with thyme essential oil nanoemulsion (TEON) and produce a more effective antibacterial efficacy. Therefore, in this study, the bactericidal effects of ultrasound (US) in combination with TEON treatments against Escherichia coli (E. coli) O157:H7 were investigated. The remarkable synergistic effects of US (20 kHz, 255 W/cm2, 9 min) and TEON (0.375 mg/mL) treatments at 22 °C reduced E. coli O157:H7 populations by 7.42 ± 0.27 log CFU/mL.The morphological changes of cells exposed to different treatments were observed by scanning electron microscopy and transmission electron microscopy. The results showed that the synergistic effects of the ultrasound and TEON treatments altered the morphology and interior microstructure of organism cells. Laser scanning confocal microscopy (LSCM) images revealed that the combination treatments of ultrasound and TEON altered the permeability of cell membranes, and this affected the integrity of E. coli O157:H7 cells. This was further indicated by the high amounts of nucleic acids and proteins released from these cells following treatment.The results from this study illustrated the mechanisms of the synergistic effects of sonoporation and TEON treatments and provided valuable information for their potential in food pasteurization.  相似文献   
53.
This work focuses on the effects of different ultrasound power densities on the microstructural changes and physicochemical properties of okara fibers, which are composed of carbohydrate-based polymers. Okara suspensions were treated with ultrasound at different power densities (0, 1, 2, 3, 4, and 5 W/mL) for 30 min, after which the ultrasound-treated okara were hydrolyzed by trypsin to obtain okara fibers. The ultrasound treatment of the okara fibers induced structural disorganization and changes, evidenced mainly in their morphological characteristics and their relative crystallinity degrees. Increasing the ultrasound power broke the okara fibers into flaky and stacked structures. When the ultrasound power density reached 4 W/mL, the parenchyma became compact and the hourglass structure fractured. The mean particle size of the okara fiber was reduced from 82.24 µm to 53.96 µm, and the homogeneity was enhanced significantly. The relative crystallinity of the okara fibers was reduced from 55.14% to 36.47%. The okara fiber surface charge decreased when the ultrasound power was increased. However, after ultrasound treatment at 4 W/mL (800 W), the okara fiber suspension exhibited the highest viscosity value and a higher swelling capacity, water-holding capacity, and oil-holding capacity. Therefore, the results indicated that the selection of processing conditions for okara fibers is critical and that okara fiber modification using a high ultrasound treatment might improve their use in potential applications.  相似文献   
54.
Acoustoelastic effect describes the change of ultrasound velocity due to the initial stress. Its simulation involves a numerical analysis of nonlinear elastodynamics and requires high accuracy in the time domain. A time–space finite element formulation, derived from the quadratic interpolation of the acceleration within a time segment, is proposed for an accurate simulation of the acoustoelastic effect in the present study. Ten different integration schemes are generated based on this formulation and nine of them are found to be conditionally stable. Among the nine stable schemes, one is found to obtain a spectral radius of one when the normalized step ratio is less than 5.477, indicating no numerical dissipation or numerical divergence. Compared with integration schemes from previous studies, this integration scheme demonstrates better performance in calculation accuracy and energy conservation. A two-stage approach, namely the static stage and the dynamic stage, has been employed in the simulation of the acoustoelastic effect. The former stage is adopted to obtain the initial stress and the latter stage, where the proposed integration scheme is implemented, is adopted to simulate the ultrasound propagation in an initial stress state. The simulation results of the dynamic stage show that the ultrasound velocity increases in a compression stress state and decreases in a tension stress state for aluminum alloy, which is in good agreement with previous experimental studies. Together with the simulation result of the static stage, it is conjectured that the acoustoelastic effect results from the stress-dependent elastic modulus.  相似文献   
55.
When immiscible liquids are subjected to an ultrasonic field, they form emulsions. This principle has been used to improve the mass transfer characteristics of a liquid-liquid extraction process in microreactor systems. The formation of emulsion and its characteristics are prominently dependent on the properties of the liquids used and this also holds true for emulsion brought about by ultrasound. This paper focuses on the properties of fluids that are reported to have an influence on the cavitation behaviour, namely viscosity, interfacial tension and vapour pressure. These properties were examined by changing the solvent of the organic phase in the hydrolysis of p-nitrophenyl acetate. The study is performed by comparing pairs of solvents that are different in one property but similar in the other two. The pairs selected are toluene – chlorobenzene for viscosity, toluene – methyl Isobutyl ketone for interfacial tension and methyl isobutyl ketone – 2-Methyl tetrahydrofuran for vapour pressure effects. A qualitative study was performed with a high-speed camera in flow to understand the emulsification initiation mechanisms and behaviours. These findings were further explored by performing the sonicated emulsion in a batch-sonicated reactor. The quantitative analysis of the fluid properties was evaluated and compared based on the relative percentage increase in yield upon sonication with respect to their individual silent conditions. The quantitative results were further supported by the quantification of the emulsion performed with an FBRM probe. The results indicate a two times improvement in yield with solvent of lower viscosity as 2 times more droplets were formed in the emulsion. Both the solvent systems with higher interfacial tension and vapour pressure had an improved yield of 1.4 times owing to larger number of droplets formed.  相似文献   
56.
Nano plates of zinc(II) based metal-organic framework (MOF) were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure. Control of particle size and morphology was enhanced in this synthesis method. Nano plates of an interpenetrated amide-functionalized metal-organic framework, [Zn2(oba)2(bpfb)]·(DMF)5, TMU-23, (H2oba = 4,4′-oxybis(benzoic acid); bpfb = N,N′-bis-(4-pyridylformamide)-1,4-benzenediamine, DMF = N,N-dimethyl formamide), was synthesized under ultrasound irradiation in different concentrations of initial precursor. The nano structure and morphology of the synthesized MOF were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction, thermo gravimetric analysis (TGA), elemental analysis and FTIR spectroscopy. Moreover, Fluorescence emissions of nanoplates have been studied. Amide-functionalized MOF shows high selectivity for sensing of nitroaromatic compounds such as nitrophenol, nitroaniline, and nitrobenzene in acetonitrile solution. Fluorescence intensity decreased with increasing contents of nitroaromatics in acetonitrile solution due to fluorescence quenching effect.  相似文献   
57.
Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG.  相似文献   
58.
Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US–SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US–SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US–SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US–SP pretreated biomass without the formation of microbial inhibitor furfural.  相似文献   
59.
Titania (TiO2) photocatalysts, each embedded with one of six metals (Ag, Ce, Co, Fe, Mg, and Mn), were prepared using a simplified ultrasonic process. The characteristics of the prepared metal-embedded TiO2 (metal–TiO2) were determined using transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, photoluminescence emission spectroscopy, UV–visible spectroscopy, and nitrogen adsorption–desorption. Except for Co–TiO2, the metal–TiO2 photocatalysts showed improved performance for the decomposition of gaseous benzene and toluene, which are two of the most problematic indoor air pollutants that can cause a variety of adverse health symptoms, under daylight lamp irradiation. Photocatalytic activity was greatest for the Mg–TiO2 sample, followed by, in order, the Ag–TiO2, Ce–TiO2, Fe–TiO2, Mn–TiO2, unmodified TiO2, and Co–TiO2 samples. Although Mg–TiO2 showed the least redshift in its light absorption and the highest electron–hole recombination rate among the metal–TiO2 photocatalysts, it yielded the highest photocatalytic activity, likely because of its increased adsorption capacity and anatase composition. The degradation of benzene and toluene over Mg–TiO2 improved as ultrasound treatment amplitude increased from 20 to 37 μm, then decreased gradually as amplitude was further increased to 49 μm. Degradation efficiency also improved as ultrasound operation time increased from 30 to 60 min, then decreased gradually as amplitude was further increased to 90 min. Overall, this process could be utilized to prepare metal–TiO2 photocatalysts with improved performance for the decomposition of gas phase pollutants under daylight lamp irradiation.  相似文献   
60.
In recent years, high-energy ultrasound has been used as an alternative to improve the functional properties of various proteins, such as from milk, eggs, soy and poultry. The benefits of implementing this technology depend on the inherent characteristics of the protein source and the intensity and amplitude of the ultrasound, as well as on the pH, temperature, ionic strength, time, and all of the variables that have an effect on the physicochemical properties of proteins. Therefore, it is necessary to establish the optimal conditions for each type of food. The use of ultrasound is a promising technique in food technology with a low impact on the environment, and it has thus become known as a green technology. Therefore, this review focuses on the application of high-energy ultrasound to food; its effects on the functional properties of proteins; and how different conditions such as the frequency, time, amplitude, temperature, and protein concentration affect the functional properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号